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Abstract
We introduce a powerful alternative expansion method to perform multiple scattering
calculations. In contrast to standard MS series expansion, where the scattering contributions are
grouped in terms of scattering order and may diverge in the low energy region, this expansion,
called correlation expansion, partitions the scattering process into contributions from different
small atom groups and converges at all energies. It converges faster than MS series expansion
when the latter is convergent. Furthermore, it takes less memory than the full MS method so it
can be used in the near edge region without any divergence problem, even for large clusters.
The correlation expansion framework we derive here is very general and can serve to calculate
all the elements of the scattering path operator matrix. Photoelectron diffraction calculations in
a cluster containing 23 atoms are presented to test the method and compare it to full MS and
standard MS series expansion.

1. Introduction

In the last 30 years or so, multiple scattering (MS) theory has
achieved great success in the understanding of the physical
structure and chemical surroundings in systems belonging to
many scientific fields [1, 2]. The basics of the theory relies
on the precise description of the different scattering processes
undergone by an electron (or any other particle) when moving
into a material composed of numerous atoms. Many properties
of the system under study, such as the geometric surroundings
and the electronic structure, can be modeled with this theory
and most of the standard spectroscopies used to extract
information from such materials can be shown to be easily
described by MS theory [3].

The whole MS theory can be conveniently formulated in
terms of the scattering path operator [4] τ

j i
L j Li

, which describes
all the possibilities for a wavefunction of angular momentum
Li ≡ (li , mi) centered on atom i to reach atom j with angular

momentum L j . The scattering path operator τ j i , connecting
the two atoms i and j , can be shown to be the inverse of

τ j i =
[(

T −1 − G0
)−1

] j i
(1.1)

where T is the T -matrix satisfying [T ] j i
L j Li

= −2 k
π

tL j Li δ j i for
normalized spherical waves. When a spherically symmetric
potential is used, tL j Li will reduce to tl j δL j Li . It is related to
the phase shifts δl j of the potential Vj corresponding to atom

j through the relation tl j = sin δl j exp(iδl j ); (G0)
j i
L j Li

is the
matrix element of the reference propagator (the free electron
propagator if Vj is the atomic potential) between the two sites
j and i from channel Li to L j .

For a given cluster of atoms, there are two basic ways
to compute the matrix elements τ

j i
L j Li

needed by MS theory.

One is to build the MS matrix [T −1 − G0] j i
L j Li

and to invert it
numerically; this is called full MS. It includes all the scattering
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contributions and is exact from the point of view of scattering
theory. This can be done for any energy. The MS matrix,
however, has to be built up prior to the inversion and, as
no approximation can be used to speed up the computation
or to reduce the size of the matrix, the rapidly increasing
computation time (which scales as the cube of the dimension
of the matrix) and memory (which scales as the square of the
dimension of the matrix) will soon limit the use of the method.
The second approach consists in expanding the inverse in (1.1)
by rewriting it as τ j i = [T (I − G0T )−1] j i and truncating
the expansion of (I − G0T )−1 to a value called the scattering
order,

τ j i = χ
j i

1 + χ
j i

2 + · · · + χ j i
m + · · ·

= T jδ j i + T j G ji
0 T i

(
1 − δ j i

)

+
∑

k �= j,k �=i

T j G jk
0 T k Gki

0 T i

+
∑

m �=i,k �=m, j �=k

T j G jk
0 T k Gkm

0 T m Gmi
0 T i + · · · (1.2)

where χ
j i

m is called the m-order signal [5] and gives the
contribution of the electron after m scattering events. Here,
we have omitted the indices of L ≡ (l, m) for simplicity. This
method is usually referred to as MS series expansion (SE), or
Watson series expansion in the nuclear physics literature [6].
MS series expansion is more flexible than full MS: truncation,
filtering or alternative formulations such as the Rehr–Albers
(RA) separable representation [7] can be used to speed up
while controlling the accuracy of the computation. It has no
real memory limitation, but it converges to the matrix inversion
(MI) result only when the eigenvalues of the MS matrix are all
less than unity, which is not the case in the low energy region.
For some clusters, the divergence energy could be as large as
100 eV [8]. Moreover, the series expansion implies the explicit
building of all the paths that the particle can follow to go from
one atom to another. The number of these paths and the number
of angular momentum values can soon become so high that
the CPU time needed will seriously limit the usefulness of the
method [9].

A few other kinds of methods have been proposed to
compute the matrix elements τ

j i
L j Li

, such as recursion methods
based on a Lanczos/continued fraction (CF) approach [10]
or on a Lanczos/LU approach [11], a repartitioning
approach [12] and iterative approaches [13], which can provide
substantial improvements to the conventional LU (lower–
upper) decomposition. However, most of them are still
based on the two basic treatments presented above, and as a
consequence they share their advantages and disadvantages.
Moreover, some of these methods are specifically designed
for x-ray absorption spectroscopy calculations, where only the
element τ 00

L0 L0
is calculated, which usually greatly simplifies

the computation. A general efficient method allowing the
accurate computation of all the elements of the scattering path
operator matrix is therefore required. For instance, core level
photoelectron diffraction requires the knowledge of the τ

j0
L j L0

elements, while for low energy electron diffraction (LEED)
or valence photoelectron diffraction all the τ

j i
L j Li

values are
needed [3].

We introduce here an alternative MS calculation method
called the correlation expansion (CE), which was first
presented by Ernst et al [14] and later described in more
details by Siciliano and Thaler [15] in the case of multiple
scattering in nuclear physics. An approximate version of
it, specifically designed for the case of x-ray absorption,
has also been worked out by Filipponi and coworkers [5].
Although an expansion method itself, it is different from the
treatment of the MS series expansion where the scattering
contributions are grouped by scattering orders. This correlation
method partitions the scattering contributions in terms of the
contribution from different groups of atoms. Moreover, it
is a finite expansion whose full sum is, by construction,
always and exactly the matrix inverse (I − G0T )−1. This
is demonstrated in the general case in appendix B of [15].
The correlation expansion has the advantages of both full MS
and MS series expansion. Like full MS, it can be used in
the low energy region without divergence problem, as we
demonstrate it numerically in section 3 below. This property
comes from the fact that it is based on a combinatorial and
finite expansion and not on perturbation theory [15] like MS
series expansion. However, like the series expansion method,
truncation, filtering or other treatments commonly used in
the perturbative expansion can be adapted and applied to
optimize the correlation expansion. Furthermore, like the
series expansion, the memory requirements should be much
less than for full MS, and therefore larger clusters could be
computed within the correlation expansion.

We present in section 2 a detailed description of the
correlation expansion framework. Within this framework,
photoelectron diffraction tests with a 23 atom cluster
are presented in section 3. They show the efficiency
of the correlation expansion method for MS calculations.
Comparisons with the full MS and with the MS series
expansion are explicitly shown. A discussion of the advantages
and the drawbacks of correlation expansion is given in
section 4.

2. Correlation expansion framework

The formal derivation of correlation expansion has been given
by Siciliano and Thaler [15] and we recall briefly here the
central result of their work. They demonstrate that if A is an
operator depending on the N quantities i , j , k, . . ., and if we
write as A(i jk) the restriction of A to the subsystem composed
of i , j and k, then the following combinatorial expansion
holds:

A = A(i, j,k,...)

=
∑

i

A(i) +
∑
i �= j

[
A(i, j) − A(i) − A( j)

]

+
∑

i �= j, j �=k

[A(i, j,k) − A(i, j) − A(i,k) − A( j,k)

+ A(i) + A( j) + A(k)] + · · ·
= A1 + A2 + A3 + · · · AN . (2.1)

Such an expansion is not unique; there is an infinity of manners
to define the subsystem quantities A(i jk), the only constraint
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being that A = A(i, j,k,...). Equation (2.1) shows that correlation
expansion is a finite expansion; the number of terms of this
expansion corresponds to the size of the problem. We will now
apply this result to the scattering path operator.

We consider a system with N atoms. The scattering path
operator τ j i includes all the scatterings from atom i to atom
j . Applying equation (2.1) to τ j i for the N atom system leads
directly to

τ j i = γ
j i

1 + γ
j i

2 + · · · + γ j i
m + · · · + γ

j i
N (2.2)

where γ
j i

m is the scattering contribution from all possible m
atom groups and is called the m body signal. It is the sum of
all possible specific m atom group scattering contributions,

γ j i
m =

∑
{k,...,l}�={i, j}

γ j i
m (k, . . . , l) (2.3)

where γ
j i

m (k, . . . , l) is the scattering signal starting from atom
i , ending at j and involving the specific m −2 atoms {k, . . . , l}
when i �= j or the m − 1 atoms {k, . . . , l} when i and j
coincide.

The treatment of the scattering signal γ
j i

m (k, · · · , l) is the
key of correlation expansion and differs from the MS series
expansion approach. Obviously, the scattering contribution
from one atom can only be

γ
j i

1 = T jδ j i . (2.4)

The contribution from the two atom group {i, j} is given
by

γ
j i

2 = τ
j i

2 (2.5)

where τ
j i

2 is the scattering path operator matrix element for the
two atom cluster {i, j}. Here, we have set j �= i and therefore
the two extra terms given by equation (2.1) disappear. It is
possible to write it as a MS series expansion representation
(provided the latter converges) as

γ
j i

2 = T j G ji
0 T i + T j G ji

0 T i Gi j
0 T j G ji

0 T i

+ T j G ji
0 T i Gi j

0 T j G ji
0 T i Gi j

0 T j G ji
0 T i + · · ·. (2.6)

This MS series expansion contains an infinity of terms.
Hence, correlation expansion can be seen as a reordering of
the series expansion (reordering of a diverging series is often
a standard way to remove the divergence by incorporating into
the new series, before it is truncated at the terms that cause the
divergence of the original series). For a given cluster of atoms
series expansion is an infinite expansion, but at each order the
corresponding contribution contains a finite number of terms
(the number of paths at this order). By contrast, correlation
expansion is a finite expansion but the contribution of each
order contains an infinite number of terms such as (2.6). A
view such as (2.6) however is only valid when the kernel matrix
G0T has all its eigenvalues within the disc of radius 1, while
correlation expansion itself is always valid. So we take here the
scattering path operator τ

j i
m of small atom groups as the basic

calculation unit and choose a suitable way to do the calculation.
The scattering contribution starting from atom i ending at

atom j in a given m-atom system is denoted as τ
j i

m (k, . . . , l).

It is the sum of all the contributions involving the atoms
(k, . . . , l),

τ j i
m (k, . . . , l) = γ j i

m (k, . . . , l)

+
∑

{k′,...,l′}⊆{k,...,l}
γ

j i
m−1

(
k ′, . . . , l ′

)

+
∑

{k′′ ,...,l′′ }⊆{k,...,l}
γ

j i
m−2

(
k ′′, . . . , l ′′

)

+ · · ·
∑

{k′′′ }⊆{k,...,l}
γ

j i
3

(
k ′′′) + γ

j i
2 (2.7)

where the m-body signal in sub-cluster {i, j ; k, . . . , l} is

γ j i
m (k, . . . , l) = τ j i

m (k, . . . , l)

−
m−1∑
n=2

∑
{k′ ,...,l′}⊆{k,...,l}

γ j i
n

(
k ′, . . . , l ′

)
. (2.8)

Equation (2.8) is the equivalent of equation (2.2) when
restricting the cluster to the corresponding sub-cluster.
Therefore, the total m-body signal is

γ j i
m =

∑
{k,...,l}�={i, j}

τ j i
m (k, . . . , l)

−
m−1∑
n=2

∑
{k,...,l}�={i, j}

∑
{k′,...,l′ }⊆{k,...,l}

γ j i
n

(
k ′, . . . , l ′

)

=
∑

{k,...,l}�={i, j}
τ j i

m (k, . . . , l)

−
m−1∑
n=2

Cm−n
N−n

∑
{k′,...,l′ }�={i, j}

γ j i
n

(
k ′, . . . , l ′

)
(2.9)

where C M
N = N !

M!(N−M)! is a binomial coefficient [16], with the
notation ∑

{k′,...,l′}�={i, j}
γ j i

n

(
k ′, . . . , l ′

) = γ j i
n . (2.10)

To further simplify the notation, we can express the m-
body signal by recursion,

γ j i
m = T j i

m −
m−1∑
n=2

Cm−n
N−nγ

j i
n (2.11)

where
T j i

m =
∑

{k,...,l}�={i, j}
τ j i

m (k, . . . , l). (2.12)

The same discussion also holds for the case j = i .
Finally, the m-body signal in the correlation expansion can be
expressed as

γ j i
m =

⎧⎪⎨
⎪⎩

T jδ j i m = 1

T j i
m −

m−1∑
n=1

Cm−n
N−nγ

j i
n m � 2

(2.13)

with T j i
m given by (2.12).

A compact general formula can be obtained by iterating
the correlation expansion term γ

j i
m in equation (2.11). This

gives

γ j i
m =

m∑
n=1

P (n, m) T j i
n (2.14)

3
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with

P(n, m) =

⎧⎪⎨
⎪⎩

1 m = n

−
m−1∑
l=n

Cm−l
N−l P(n, l) m > n.

(2.15)

Introducing the notation

Q(n) =
N∑

m=1

P(n, m) (2.16)

to simplify the expression, the scattering path operator is now
given by

τ j i = γ
j i

1 +γ
j i

2 +· · ·+γ j i
m +· · ·+γ

j i
N =

N∑
n=1

Q(n)T j i
n . (2.17)

The correlation expansion framework we have derived
here is very general and relatively simple. It allows us
to calculate all the elements in the scattering path operator
matrix and a convenient algorithm can easily be designed
from equations (2.14) or (2.17). Practically speaking, the
different terms γ

j i
m occurring in these equations are computed

by matrix inversion for all the small atom groups appearing
in equation (2.12). By using the small atom group scattering
path operator matrix instead of the scattering path unit G0T as
the basic calculation unit, there is no divergence problem in the
low energy domain (see the next section for a numerical proof),
where, for a given cluster, it always converges to the result
obtained by numerically inverting the MS matrix. Therefore,
correlation expansion can be viewed as an extreme case of
matrix partitioning. Furthermore, as it does not involve the
computing of large inverse matrices, it can be applied to large
systems where full MS cannot be used. This means that it will
have the advantages of both full MS and MS series expansion.

3. Computation tests

In this section, we perform several tests to assess the efficiency
and accuracy of correlation expansion within the framework
described in section 2. The machine used for these tests was
equipped with a four-core Intel Xeon 2.33 GHz processor,
but only one core was used in our calculations. We have
chosen for these tests to perform photoelectron diffraction
spectroscopy (PED) with a cluster of 23 atoms. The choice
of PED is dictated by the fact that it involves the contribution
of many more matrix elements of the scattering path operator
than in the case of x-ray absorption (XAS). Therefore, it
leads to much longer calculations, and convergence for the
MS series expansion is not as fast as in the case of XAS.
From an MS point of view, it can hence be considered as a
medium case between the simpler XAS calculations and the
more demanding LEED ones. The small size of the cluster is
chosen so as to be always able to perform full MS calculations,
which will serve as our reference calculations. It has however
the disadvantage of reducing the importance of MS. We have
also done these test calculations at different energies to be able
to encompass both the divergence and convergence domains

of the MS series expansion method. We present here a
comparison between the three methods, except when series
expansion completely diverges, where the results obtained are
completely meaningless.

The test cluster chosen is an MgO(001) cluster. It has
a hemispherical shape with a magnesium atom located at the
origin. Its radius is a, where a is the lattice constant, whose
value was taken as 4.210 Å. We selected the magnesium
atom located at the bottom as the absorber, so as to maximize
MS effects in PED. We chose p core states as the initial
states, and a real Hedin–Lundqvist potential was used in the
calculation as the optical potential. Furthermore, we have
removed all damping (vibrational, mean-free-path-like) from
our calculations so that all three methods can be more easily
compared. Although damping is the key parameter that
controls the convergence of a cross-section in terms of cluster
size, our purpose here is not to find a method that would
need a smaller cluster to achieve the result, but to propose an
alternative approach that will always converge to the MI result
for a given cluster (which SE does not always do). Inclusion
of damping will certainly improve the rate of convergence of
CE in terms of expansion order. For SE, it will both augment
the rate of convergence and extend the convergence domain
to lower energies. But it will not remove all the divergence
problem in SE.

The test energy points are respectively 21, 64, 184 and
289 eV. They correspond to the low energy region (21 eV),
where the MS series expansion is expected to diverge (as
shown below), the medium energy region (62 eV), where the
MS series should converge slowly (at least when damping is
included), and a higher energy region (184 and 289 eV), where
the full MS method would be time consuming and might be
unworkable because of its memory requirements (at least for
larger clusters).

3.1. Computation tests: convergence

We present in figures 1–4 the spectra calculated with the
correlation expansion for different expansion orders compared
to those obtained with the full MS at 21, 62, 184 and
279 eV. The corresponding spectra computed with the MS
series expansion for the same orders as for CE are also
presented for comparison. We see clearly in these figures that
correlation expansion presents good convergence properties at
all energy points. In particular, it clearly converges for the
low energy point 21 eV, where MS series expansion diverges
(we have omitted to plot it at this energy for the higher
orders because the calculated signal grows very quickly with
the scattering order and is then totally meaningless, as can
be seen from the N = 7 case). Even very high orders
of the SE expansion cannot reproduce the features of the
spectrum. We notice as well that, as in the case of the MS
series expansion, the lower the energy, the higher the expansion
order necessary to achieve a satisfactory convergence for the
correlation expansion. Furthermore, CE obviously converges
much faster than SE. For instance, in the case of an energy of
184 eV, CE has already converged at order four, while at order
seven SE has still not fully converged. This is an important

4
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Figure 1. The PED spectra of the MgO cluster (23 atoms) obtained by using the full MS method (MI), MS series expansion (SE) and
correlation expansion (CE) at 21 eV. Expansions are truncated at orders 5 (a), 7 (b), 10 (c) and 14 (d). As SE diverges at this energy, SE for
truncation orders of 10 and 14 is not plotted in (c) and (d).

Figure 2. The PED spectra of the MgO cluster (23 atoms) obtained by using the full MS method (MI), MS series expansion (SE) and
correlation expansion (CE) at 62 eV. Expansions are truncated at orders 3 (a), 4 (b), 6 (c) and 8 (d).

point because it means, from a practical point of view, that a
CE calculation can be truncated much before a SE calculation.
This, as we will see, has consequences for the CPU time.

3.2. Computation tests: accuracy

By construction, full MS is the most accurate of the three
methods as it includes all the scattering contributions, while for
the other two, being expansion methods, the accuracy depends
on the truncation order. As we saw in section 2, correlation
expansion is formally equivalent to full MS when being carried
out to the last order of the expansion, because by construction
each term at a given order cancels out some terms from the

previous order, as can be seen from equation (2.1). As we can
see from figures 2–4, the spectra calculated by the correlation
expansion method are closer to those obtained by full MS
than those resulting from a series expansion calculation at the
same truncation order. To compare the calculation accuracy
of both the MS series expansion and the correlation expansion
methods in a more quantitative way, we consider the spectrum
calculated by the full MS method as the reference and define
an error function (also known as the R-factor) according to

Rse/ce =
∑n

i=1 wi(I se/ce
i − I mi

i )2

∑n
i=1 wi(I mi

i )2

5
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Figure 3. The PED spectra of the MgO cluster (23 atoms) obtained by using the full MS method (MI), MS series expansion (SE) and
correlation expansion (CE) at 184 eV. Expansions are truncated at orders 3 (a), 4 (b), 5 (c) and 7 (d).

Figure 4. The PED spectra of the MgO cluster (23 atoms) obtained by using the full MS method (MI), MS series expansion (SE) and
correlation expansion (CE) at 279 eV. Expansions are truncated at orders 2 (a), 3 (b), 4 (c) and 6 (d).

where I mi/se/ce
i is the spectrum calculated with full MS/MS

series expansion/correlation expansion at the data point i ; wi

is a weight factor which we set here to wi = 1. This
definition implies that the smaller the R-factor, the more
accurate the calculation based on the corresponding expansion.
Figure 5 presents the values of this R-factor for the calculations
performed at 184 eV. Here a logarithmic scale is used for
the y axis. The important point to note is that the R-factor
of correlation expansion is always smaller than that of MS
series expansion when the expansions are truncated at the
same order. This demonstrates quantitatively that correlation

expansion is more accurate than MS series expansion, as we
had anticipated qualitatively from a look at the corresponding
figure. This result also holds when the calculation is performed
at the energies of 62 and 279 eV. MS series expansion strongly
diverges at 21 eV and therefore we cannot compare the R-
factors. We can also notice in this figure that the R-factor
of MS series expansion can sometimes oscillate with the
expansion order. This is probably due to the presence of
eigenvalues close to unity in the kernel matrix G0T . This figure
shows in particular that, at this energy and for this cluster,
CE at order three provides about the same accuracy as SE

6
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Figure 5. The logarithm of the R-factor of the PED spectrum of the
MgO cluster (23 atoms) computed by MS series expansion (SE) and
correlation expansion (CE) for different orders at E = 184 eV.

at order seven or eight. This result can be understood from
the respective definition of the expansion terms in MS series
expansion and correlation expansion.

Indeed, in the MS series expansion,
∑n

m=1 χ
j i

m includes
all the scattering contributions of order less than or equal to
n. These contributions can involve any number of atoms up to
n atoms and the number of terms of this truncated expansion
is finite. By contrast, in correlation expansion, the m-body
signal γ

j i
m includes all the scattering events within the sub-

clusters built with these m atoms. So, in terms of series
expansion, they contain an infinite number of terms. Hence,∑n

m=1 γ
j i

m includes not only the scattering events up to order
n, which correspond to

∑n
m=1 χ

j i
m in MS series expansion,

but also all the higher-order terms within the corresponding
sub-clusters. This clearly explains why correlation expansion
is more accurate than Watson series expansion at the same
truncation order. This is exactly what we can see numerically
from figures 2–5.

3.3. Computation tests: CPU time and memory

Figure 6 presents the computation time of the PED calculation
using MS series expansion and correlation expansion for
different truncation orders at 184 eV. The CPU time for full
MS is also plotted. As it is the first time that this new
correlation expansion framework has been used for a full MS
calculation, we have not yet implemented any filtering or other
treatments in our computer code to speed up the calculation
without losing too much on accuracy. By contrast, for MS
series expansion, the RA separable representation, which is
widely used in computer codes, already takes into account
some approximations (without which MS series expansion
would be totally intractable because of the huge number
of terms involved in a true SE calculation). We see here
that for lower orders correlation expansion takes much more
time than MS series expansion for the same truncation order
(but the accuracy is different as discussed before). This
difference, however, decreases when the expansion order

Figure 6. The computation time for the PED calculation of the MgO
cluster (23 atoms) computed by the full MS method (MI), MS series
expansion (SE) and correlation expansion (CE) for different
truncation orders at E = 184 eV. The R-factor is also noted to give
the accuracies: a, R > 20%; b, 5 < R < 20%; c, 1% < R < 5%; d,
0.1% < R < 1%; e, 0.01% < R < 0.1%. A logarithmic scale is
used for the y axis.

increases: the computation time needed when using MS
series expansion increases exponentially with the expansion
order (it is roughly proportional to (Nat − 1)m), while that
for correlation expansion increases with a slower evolution
( Nat!
(Nat−m)!m! ). Therefore, when the expansion order is larger than

a certain order (eight for 184 eV in this cluster), the multiple
scattering correlation expansion will take less time than the MS
series expansion when truncated at the same order.

Obviously, the computation efficiency depends not only
on the computation time but also on the computation accuracy
and their interplay. This is why we have added in figure 6 the
corresponding R-factor for the different truncation orders. A
clearer relation between computation and accuracy is given in
figure 7 at the energy of 184 eV. At this energy, the error of a
calculation performed by MS series expansion is always larger
than 1% (ln(1%) ≈ −4.61). This leads to a visible discrepancy
between the spectra obtained by full MS and those by MS
series expansion, no matter how high the expansion order is
(less than eight in our tests). The accuracy of calculations done
by correlation expansion increases with the expansion order
(figure 6) and so does the computation time (figure 7). When
the CE expansion order is up to five, the R factor is 0.634%
and the spectrum is almost indistinguishable from that obtained
with full MS method, as shown in figure 3. Unfortunately, the
computation time is much more than that required by full MS.
So from a computation time point of view, if an error in the
calculation of about 5% is acceptable, RA-MS series expansion
is faster, although an expansion order of five is needed while it
is only four for correlation expansion. If the desired accuracy
(here we define it as 1 − R) has to be larger than 99%, full
MS is faster (but we are dealing with a small cluster: for a
larger cluster full MS will probably not be possible). This
advantage, however, decreases quickly with the increasing
energy because of the increasing demand on computer memory
for the treatment of the MS matrix and because the expansion
order of correlation expansion decreases to obtain the desired
accuracy.
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Figure 7. Computation of the error R as a function of the
computation time T when the energy is 184 eV. A logarithmic
transformation is used for both R and T .

Figures 8–10 show the computation times of our PED
calculations at 21, 62 and 279 eV as a function of the
expansion order and the accuracy. The trends are similar to
those observed at 184 eV: the computation time of MS series
expansion increases exponentially with the expansion order
(linearly in the figure as a logarithmic scale is used), while
that of correlation expansion increases less exponentially; the
crossing order is still about eight for these four energy points.
In this case, the expansion method that is the fastest will
depend essentially on the accuracy needed. The computation
time at the crossing point is generally larger than that obtained
by full MS, which takes the same time as correlation expansion
at order three. Concerning the computation error, it decreases
both in MS series and correlation expansion with the energy at
the same truncation order, so smaller orders are necessary to
achieve the desired accuracy in the high energy calculations,
especially for the correlation expansion. An important point to
stress here is that, as we can see from the figure 10, correlation
expansion already gives a good accuracy when the expansion
order is three (less than 1%). There, it takes less time than

full MS. At this order, SE has not converged yet and does not
give a good agreement with the exact result. To obtain a good
agreement with SE, we have to carry it to an order that leads
to a CPU time larger than that necessary for CE. Actually, to
give an idea of the difference in CPU time, in the case of the
184 eV calculation shown in figure 3, order four CE, which is
converged, needs 632 s, while order seven SE, which does not
give a fully converged result yet, requires 18 950 s (we recall
here that no filtering is used in any of the expansion methods).
Order three CE, for which the agreement with the exact result
is about the same as that of order seven SE, is obtained after a
47 s calculation. Therefore, when SE does not converge very
fast, as is the case in this example, CE has a clear advantage
over SE.

Memory usage of the three algorithms we have compared
here is quite straightforward and does not require any
sophisticated test. Memory is one of the drawbacks of MI and
one of the reasons why we propose this correlation expansion
approach. By construction, CE relies on the inversion of many
small matrices. Therefore, it will evidently cost much less in
terms of memory, especially as the same array can be reused
for all matrices. SE does not use heavily computer memory,
at least when not all the matrix elements of the scattering path
operator are needed such as in XAS or PED. We performed
some numerical tests that completely confirm this view.

4. Discussion and conclusion

We have introduced and tested a new powerful expansion
method to perform MS calculations. In contrast to MS series
expansion, where the scattering contributions are grouped in
terms of scattering order, correlation expansion partitions the
scattering process into contributions from different small atom
groups. One of its essential features is that, despite being
an expansion, it does converge at all energies, in contrast to
series expansion. This results from the fact that it is based on
a combinatorial and finite expansion and not on perturbation
theory. The general proof for this has been given by Siciliano
and Thaler [15]. Therefore, it can be used in the near edge
calculation without any divergence problem, where it takes

Figure 8. The computation time for the PED calculation of the MgO cluster (23 atoms) computed by the full MS method (MI), MS series
expansion (SE) and correlation expansion (CE) for different orders (a) and accuracies (b) at E = 21 eV. The logarithm is taken whenever
necessary. The R-factor is also noted to give the accuracies in (a): a, R > 20%; b, 5 < R < 20%; c, 1% < R < 5%; d, 0.1% < R < 1%; e,
0.01% < R < 0.1%; f, R < 0.01%.
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Figure 9. The computation time for the PED calculation of the MgO cluster (23 atoms) computed by the full MS method (MI), MS series
expansion (SE) and correlation expansion (CE) for different orders (a) and accuracies (b) at E = 62 eV. The logarithm is taken whenever
necessary. The R-factor is also noted to give the accuracies in (a): a, R > 20%; b, 5 < R < 20%; c, 1% < R < 5%; d, 0.1% < R < 1%.

Figure 10. The computation time for the PED calculation of the MgO cluster (23 atoms) computed by the full MS method (MI), MS series
expansion (SE) and correlation expansion (CE) for different orders (a) and accuracies (b) at E = 279 eV. The logarithm is taken whenever
necessary. The R-factor is also noted to give the accuracies in (a): a, R > 20%; b, 5 < R < 20%; c, 1% < R < 5%; d, 0.1% < R < 1%; e,
0.01% < R < 0.1%.

much less memory than full MS. A direct consequence is
that larger clusters can be considered. It is also the only
approach of the three for MS calculations within the energy
region where full MS is impossible to use (because of the
size of the cluster considered) and where series expansion
diverges. In some clusters, this energy can reach the order
of 100 eV [8], far away from the divergence limit usually
accepted. Furthermore, for series expansion, the larger the
cluster, the lower the convergence, as MS becomes more and
more important. This can be checked by plotting as a function
of energy the spectral radius (i.e. the largest of the eigenvalues)
of the kernel matrix. Indeed, preliminary tests show that it does
not behave monotonically, but exhibits peaks, which, under
certain circumstances (such as the level of damping, the cluster
size and the electronic structure), can enter the divergence
domain. In particular, the spectral radius seems to increase
importantly with the cluster size, which can be understood
qualitatively, as the spectral radius is nothing else than a
measure of the importance of MS in the system. Moreover, CE
is more accurate than MS series expansion when the expansion
is taken up to the same order. As we have seen in our 23 atom
case, CE in its present version without approximation will be

faster than SE each time SE converges slowly, i.e. at medium
energies and for large clusters. Furthermore, the CE framework
we have outlined here is very general and not limited to certain
specific spectroscopies. In particular, it can calculate all the
elements in the scattering path operator matrix, and therefore
can be used not only for XAS, as in the work by Filipponi et al
[10], but also for PED where a column block of this matrix
is needed, for LEED or valence level PED where all elements
are necessary, or all other spectroscopy that can be described
within MS theory.

No damping was included in our tests, as vibrational
damping is treated in a slightly different way in the RA-SE
calculation. Obviously, damping will improve the convergence
of the two expansion methods. Therefore, we can expect a
decrease of the CPU time in this case as truncation will be
possible at a lower order while this will not affect the CPU
time of matrix inversion.

In its present form (i.e. inverting exactly all the sub-
cluster matrices), correlation expansion is still limited by
its computation time although it compares favorably to
series expansion. It takes much more time than MS series
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expansion at the same truncation order, but, as we have
demonstrated, the two truncation orders cannot be compared
as SE converges much more slowly (and we expect the
discrepancy between their respective convergence rates to be
much more important for clusters larger than the one we have
used for our tests). Some further work is therefore needed
to improve its already interesting performances. Such an
efficient approximation has been implemented by Filipponi and
co-workers in the very particular case of x-ray absorption to
speed up correlation expansion where full matrix inversion of
the sub-cluster matrices is replaced by a recursive continued
fraction approach. There, the approximation after the i th
iteration amounts to calculating exactly the cross-section for
a finite chain model including i − 1 bonds, i.e. the i body
signal [10]. This method however is not suitable in the general
MS calculation we have developed here, as it works only for
the calculation of diagonal elements of an inverse matrix. We
are currently working on alternative methods that would allow
us to compute all the elements of the inverse matrices without
explicitly inverting them. We tested a matrix partition method
to perform the calculation of small atom groups, leading to
an about 5% time and 10% memory saving. Obviously, our
approach at present gives the full contribution at a given order.
Possible solutions to speed up the method, especially in view
of its high accuracy, which is not always needed, include
the introduction of suitable filtering to eliminate sub-cluster
matrices whose scattering contribution is negligible, and the
replacement of the full inversion of the remaining matrices
by an accurate approximation that would be valid in all MS
cases. The fact that small cluster MS matrices have a low
spectral radius [8] even at very low energies (compared to
larger clusters) makes us confident that we will be able to
find such a fast alternative to matrix inversion for these small
matrices.
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